
Translating to C an OS proto-kernel written in Coq

Paul Torrini
Université Lille 1, CRIStAL

DeepSpec Summer School, 20.07.2017

Pip: an OS proto-kernel

proto-kernel: minimal trusted computing base for an OS

kernel mode limited to virtual memory management
(MMU configuration and context switching)

model written in Coq

verification of virtual memory isolation (work in progress)

translation to C
– currently a Haskell function to C source code

unverified
compiled by GCC

– to be replaced with a certified one to CompCert

2/15

Pip: the model

model written in a shallow embedding of a C-like language using a
monadic style

similarity of monadic code to C source,
1-1 match of monadic definitions and C commands (modulo types)

termination forced by timeout related to memory size

quasi-executable model, modulo specification of low-level functions
(implemented in C and assembly)

well-typed monadic code implies nothing can go wrong – modulo
low-level functions

isolation proof carried out on the shallow model using Hoare logic

3/15

Adequate translation

equivalent non-wrong behaviour:

⇢ � P1 ⇠ P2 iff in environment ⇢ programs P1 and P2 don’t go
wrong and either converge to the same final state or both diverge

adequate translation ⌧ : LA ! LB preserves non-wrong
behaviour equivalence:

for each ⇢, P1, P2, ⇢ � P1 ⇠ P2 ! ⌧ v⇢ � ⌧P1 ⇠ ⌧P2

n-w equivalence: P1 ⌘ P2 iff for each ⇢, ⇢ � P1 ⇠ P2

at best, shallow-embedding languages and translation, ⌘ follows
from = (propositional equality)

4/15

Translation verification problem

translating from a safer language to a less safe one (safer = having
stronger types) can make verification problematic

 Stronger types Weaker types

GUARNTEE

TRANSLATEOK OK

OK OK

object
stisfies spec

object may not
satisfy spec

PROBLEMATIC

NO

(e.g. in Coq)
 P’P

(e.g. in C)

5/15

Safe translation approach

define an adequate one-to-one translation from less safe to safer,
and invert it

in our case: invert a semantic representation of the C fragment in
Coq

semantic representation includes: types, values, programs,
definition of well-typedness (static semantics) and behaviour
(dynamic semantics)

monadic code could give us a denotational semantics – however,
a monadic program can be equivalent to many Gallina terms, lots
of maths, not very manageable

6/15

Verified translation plan

goal: translate adequately the monadic code (MC) to the
corresponding fragment of C

use a deep embedding (DEC) in Coq as a small intermediate
language, specifying syntax and operational semantics (static and
dynamic)
interepret DEC into MC, prove equivalence by propositional
equality
translate adequately from DEC to CompCert C to obtain certified
translation+compilation

7/15

DEC: a deeply embedded imperative language

based on structural operational semantics (SOS)

inductive definition of the syntax (types, values and programs)
functions: primitive recursion, first-order, total application
monadic-style side effects

inductive definition of the typing relation – ensures termination

inductive definition of the SOS transition relation (small step),
deterministic, terminanting

an execuatable SOS interpreter, obtained as proof-term of type
soundness

an interpreter to MC (work in progress)

8/15

From DEC to MC (in progress)

D2M to be defined in Coq and proved sound wrt the SOS interpreter

 P’

Coq
Evaluation

(S,V)

D2M

(S’,V’)

Monadic−CDeep−C

SOS
Interpreter

 P

D2M−V

for each DEC program p, D2MV (SOS Int p) = D2M p

9/15

Back from MC to DC (in progress)

M2D defined in Haskell (replaces unverified translation to C)

M2D

D2M

Pip’Pip

Monadic−C Deep−C

(D2M (M2D Pip)) = Pip

10/15

DEC syntax 1

(* internal value type, parametrised by a semantic type *)

Inductive ValueI (T: Type) : Type := Cst (v: T).

(* value type, hiding the semantic type *)

Definition Value : Type := sigT ValueI.

(** Quasi-values *)

Inductive QValue : Type := Var (x: Id) | QV (v: Value).

(* mutual definition of program expressions

with functions, quasi-functions and parameters *)

Inductive Fun : Type := FC (fenv: Envr Id Fun)

(tenv: valTC) (e0 e1: Exp) (x: Id) (n: nat)

with QFun : Type := FVar (x: Id) | QF (v: Fun)

with Prms : Type := PS (es: list Exp)

11/15

DEC syntax 2

(* program expressions *)

with Exp : Type :=

| Lift (q: QValue)

| BindN (e1: Exp) (e2: Exp)

| BindS (x: Id) (e1: Exp) (e2: Exp)

| BindMS (fenv: Envr Id Fun) (venv: valEnv) (e: Exp)

| Apply (q: QFun) (ps: Prms)

| IfThenElse (e1: Exp) (e2: Exp) (e3: Exp)

| Modify (T1 T2: Type) (VT1: ValTyp T1) (VT2: ValTyp T2)

(XF: XFun T1 T2) (q: QValue).

12/15

DEC type soundness

(* TS *)

Lemma ExpEval (ftenv: funTC) (tenv: valTC) (fenv: funEnv)

(e: Exp) (t: VTyp)

(k: ExpTyping ftenv tenv fenv e t) :

ExpSoundness ftenv tenv fenv e t k.

ensures that each well-typed program in a well-typed environment runs
to a final state (a return value of matching type and a well-typed store),
which can be extracted from the applied proof-term

TS proved by structural induction on the typing relation (relying on a
form of type-based termination)

13/15

Bigger picture

Types

Terms

Values

Evaluate

Types

Terms

Evaluate

Values

META−LANGUAGE
(Coq−Gallina)

Types

Values

D2M

Evaluate

SOS REPRESENTATION

 M2D

Terms

(Pip model)

DENOTATIONS

(DEC)

(MC)

CompCert C

14/15

ODSI Project

ODSI – EU Celtic project, involving Universite’ Lille 1, Orange and
other industrial partners

2XS Team, Universite’ Lille 1 – members include
Gilles Grimaud
Julien Iguchi-Cartigny
David Novak
Samuel Hym
Vlad Rusu
Paul Torrini
Narjes Jomaa
Quentin Bergougnoux

Thanks for your attention!

15/15

