
A Module System for Certified Abstraction Layers

Jérémie Koenig

July 24, 2017

Introduction

Module system

Anatomy of a layer

Conclusion

CertiKOS

As a certified operating system kernel, CertiKOS comes with a
computer-checked, mathematical proof of correctness for its
assembly code.

We show the following contextual refinement property:

∀P . JP ⊕ CertiKOSKMBoot v JPKTSyscall

Schematically:

TSysCall

CertiKOS
MBoot

CertiKOS and Compcert

The CertiKOS proof is based on Compcert in several ways:

I Compcert x86 assembly serves as the basis for our machine
model;

I we use it to compile our C code and proofs;

I we follow similar techniques to construct our own proof.

If the layer interfaces are seen as languages, adding the code of
CertiKOS to a program can be seen as a special case of certified
compilation.

Decomposition into layers

Because contextual refinement is transitive, we can split CertiKOS
into layers:

CertiKOS = MContainer ⊕MALInit ⊕ . . .⊕MSysCall

TSysCall

MSysCall
TDispatch

...
MALInit

MALInit
MContainer

MContainer
MBoot

At each layer, a module M implements an overlay interface L2 in
terms of an underlay interface L1.

Layer interfaces

As a language, each layer interface is a specialized version of the
Compcert formalization of x86 Asm, where:

I The memory states contain contain an extra abstract data
component (each layer can specify its own type);

I A number of primitives are made available through
Compcert’s external functions interface, which can manipulate
this extra component.

Refinement

Following Compcert, we establish our refinement theorems using
backward simulations. That is, we can find a relation R such that:

→ ∃sinith safe(sh) ∃s ′h sfinalh

→ sinitl sl s ′l sfinall

R R

Lh(C)

R R

Ll (C⊕M)

Forward simulations

Backward simulations are often established by relying on the
properties of the languages to “flip” a forward simulation:

→ sinith safe(sh) s ′h sfinalh

→ ∃sinitl sl ∃s ′l sfinall

R R

Lh(C)

R R

Ll (C⊕M)

Proof structure

In our case, most steps will execute in the same way in the overlay
and underlay. But whenever the context invokes an abstract
primitive in the overlay, we need to show that:

I the layer implementation M contains a function which
implements the overlay primitive according to R, or

I the underlay contains its own corresponding abstract primitive,
which is simulated by the overlay primitive according to R.

Challenge

The layered approach provides some amount of compositionality
and allows us to verify code at an appropriate level of abstraction.

However, CertiKOS contains dozens of layers. Manually defining a
language for each layer interface, and writing a monolithic
contextual refinement proof for each layer implementation, quickly
becomes tedious and repetitive.

To address this, we introduce a module system for certified
abstraction layers, which captures the common recurring patterns
and allows us to concentrate on what is specific to any given layer.

Introduction

Module system

Anatomy of a layer

Conclusion

Verifying a single layer

All of our layers follow the same pattern:

L2

refinement proof

CompCert(MC) Masm

L1

There are many moving parts:

I the x86 and C abstract machines for L1 and L2;

I proofs of correctness for the C and assembly code;

I the Compcert certified compiler;

I a proof the the low-level code specifications refine L2.

These components must be glued into a contextual refinement
proof. How can we avoid ad-hoc boilerplate?

Modules and layer interfaces

We encapsulate what varies into modules, layer interfaces, and
simulation abstraction specifications, which express the
components of a layer on a per-function/per-primitive basis:

L ::= ∅ | i 7→ σ | L1 ⊕ L2

M ::= ∅ | i 7→ κ | M1 ⊕M2

R ::= id | R1 ◦ R2 | · · ·

Then this judgement asserts that “M implements L2 on top of L1”:

L1 `R M : L2

We encapsulate the common structure of the proof into the logic
of our module system and its soundness proof.

The logic

Elementary proof
VC(L,R, κ, σ)

L `R i 7→ κ : i 7→ σ

Horizontal composition
L `R M1 : L1 L `R M2 : L2

L `R M1 ⊕M2 : L1 ⊕ L2

Vertical composition
L1 `R M : L2 L2 `S N : L3

L1 `R◦S M ⊕ N : L3

Soundness
L1 `R M : L2

∀P.JP ⊕MKL1 v JPKL2

C [−] v C [−]

Building certified layers

We can build certified layers by expressing the components of our
proofs in a unified framework:

I Code proofs can be stated as L1 `id M : Σ;

I Refinement proofs can be formulated as Σ `R ∅ : L2;

I The correctness theorem for Compcert can be formulated as:

L1 `CR M : L2

CallConv(L1) `AsmR◦inv◦inj CompCert(M) : CallConv(L2)

In the following, we will only consider the Clight instance of the
module system.

Introduction

Module system

Anatomy of a layer

Conclusion

Overview

Under the CAL/tutorial/ directory of the summer school’s git
repository, you will find some examples of layer implementations.
They are Clight layers of varying complexity.

As an exercise, you will attempt to fill in some of the missing parts.
The file CAL/tutorial/Tutorial.pdf has some instructions.
The solutions are available under CAL/tutorial.solutions/.

In the rest of this presentation, I will introduce some of the key
interfaces in the Coq implementation of our module system, and
walk through the example layer CAL/tutorial/stack/Counter.v
to give you a sense of how it works and where to start.

General procedure

To build a certified layer on top of a given underlay Ll :

I Define its overlay interface Lh;

I Define a module M containing the code of its functions;

I Define an intermediate layer interface Σ with low-level
specifications;

I Prove one-by-one that the functions implement Σ on top of
Ll ;

I Prove one-by-one that the low-level specifications in Σ refine
the high-level specifications in Lh.

Abstract data

Before we can define a layer interface, we need to define the kind
of abstract states that it will use:

Record layerdata :=

ldata {

ldata_type :> Type;

ldata_ops : AbstractDataOps ldata_type;

ldata_prf : AbstractData ldata_type

}.

Abstract data

In addition to the type of abstract states, we specify an initial
value and an invariant, then show that they satisfy some required
properties:

Class AbstractDataOps data :=

{

init_data : data;

data_inv: data -> Prop;

[...]

}.

Class AbstractData data ‘{ops: AbstractDataOps data}: Prop :=

{

init_data_inv: data_inv init_data;

[...]

}

(liblayers/simrel/AbstractData.v)

Extended memory model

Once we’ve define a kind of abstract states D, we can use
Compcert with the new memory model mwd D, which is a pair
consisting of a normal concrete Compcert memory state, and an
abstract data component:

Context ‘{Hmem: BaseMemoryModel} (D: layerdata).

Definition mwd := (mem * D)%type.

[...]

Global Instance mwd_ops: Mem.MemoryModelOps mwd.

Global Instance mwd_prf: Mem.MemoryModelX mwd.

(liblayers/simrel/MemWithData.v)

Primitive specifications

A primitive specifications is essentially a transition relation, from a
call state consisting of an initial memory state and actual
arguments, to a return state consisting of a final memory state and
return value:

Record cprimitive (D: layerdata) :=

{

cprimitive_step:

csignature -> list val * mwd D -> val * mwd D -> Prop;

[...]

cprimitive_step_wt sg sinit v’ m’:

cprimitive_step sg sinit (v’, m’) ->

Val.has_type v’ (typ_of_type (csig_res sg))

}.

(liblayers/compcertx/CPrimitives.v)

High-level primitive specifications

Most of the time the primitives will only manipulate the abstract
data component of the state. Then, the can be computed
automatically from specifications written as high-level Coq
functions.

For instance, if we have a function of type:

f : Z -> D -> option D ,

then the (C-style) primitive specification cgensem f will update
the abstract state according to f x whenever it is called with an
integer argument of value x.

(liblayers/compcertx/GenSem.v, liblayers/compcertx/CGenSem.v)

Invariant preservation

It will be convenient when writing code proofs to be able to
assume the following:

I The invariant data inv hold on the abstract state
component;

I The memory and arguments only contain valid pointers.

To make this possible, we need to show that our primitive
specifications actually preserve this invariant:

s s ′σ

Invariant preservation

This can be done by declaring an instance of the following class:

Class CPrimitivePreservesInvariant D (σ: cprimitive D) :=

{

cprimitive_preserves_invariant sg args m d res m’ d’:

cprimitive_step D σ sg (args, (m, d)) (res, (m’, d’)) ->

cprimitive_inv_init_state D args m d ->

cprimitive_inv_final_state D res m’ d’;

cprimitive_nextblock_incr sg args m d res m’ d’:

cprimitive_step D σ sg (args, (m, d)) (res, (m’, d’)) ->

cprimitive_inv_init_state D args m d ->

(Mem.nextblock m ≤ Mem.nextblock m’)%positive

}.

There is a corresponding class GenSemPreservesInvariant for
high-level specifications computed with cgensem.

Code proofs

s s ′
σl

Clight(Ll ,κ)

Ll `id i 7→ κ : i 7→ σL

By composing these horizontally we obtain:

Ll `R M : Σ

Abstraction relations

Before we can write the refinement proofs, we need to define an
abstraction relation between the kinds of abstract data used by the
overlay and the underlay, which will specify a transformation of the
data representation between the two layers:

Record abrel (D1 D2: layerdata) :=

{

abrel_ops :> abrel_components D1 D2;

abrel_prf : AbstractionRelation D1 D2 abrel_ops

}.

Abstraction relation components

The relation has the following components:

Record abrel_components (D1 D2: layerdata) :=

{

abrel_relate: rel D1 D2;

abrel_match: rel D1 mem;

abrel_new_glbl: list (ident × list AST.init_data)

}.

Schematically:

(mh, dh)

(ml , dl)

Mem.extends
match

relate

Abstraction relation properties

The relation should satisfy the following properties:

Class AbstractionRelation D1 D2 (R: abrel_components D1 D2) :=

{

abrel_relate_init_mem:

abrel_relate D1 D2 R init_data init_data;

abrel_match_init_mem m2:

abrel_init_props m2 (abrel_new_glbl D1 D2 R) ->

abrel_match D1 D2 R init_data m2;

abrel_match_unchanged_on :>

Monotonic

(abrel_match D1 D2 R)

(- ==> Mem.unchanged_on (abrel_new_glbl_mask D1 D2 R) ++> impl);

[...]

}.

Refinement proofs

sh s ′h

sl ∃s ′l

σh

R R

σl

Lh `inv◦R◦inv i 7→ σL : i 7→ σH

By composing these horizontally we obtain:

Σ `R ∅ : Lh

Linking

Using vertical composition, we can link the code and refinement
proofs to obtain the whole certified layer:

Ll `R M : Lh

As we add more whole layers on top of Lh, we can in turn vertically
compose them together.

When we have everything we need, we can apply the module
system’s soundness proof and obtain the contextual refinement
property:

∀C , JC ⊕MKLl v JCKLh

Introduction

Module system

Anatomy of a layer

Conclusion

Conclusion

For homework:

I Pull the latest version of the DSSS git

I Start working through CAL/tutorial/Tutorial.pdf

We will be around to answer any question.

The Coqdoc for the tutorial can be browsed at:
https://certikos.github.io/tutorial-coqdoc/toc.html.
These slides can be found under CAL/slides.pdf.

Tomorrow I will discuss some of the implementation techniques
used in the module system.

https://certikos.github.io/tutorial-coqdoc/toc.html

	Introduction
	Module system
	Anatomy of a layer
	Conclusion

